
. ,,

An h)tegl*ated I~ault Tolerant Robotic
for High Reliability and

Ncvillc 1. Marzwcll
Jd Prmulsion 1,aboratorv

Controller System
Safety ‘

California institute of Tcchn610gy
l)asacicna, CA 91109

Kam S. ‘l’so and Myron IIccht
SoHaR lncorporatccl

Beverly hills, CA 90211

ABSTRACT

‘l’his paper dcscribcs the ccmccp(s and features of a fault-to] crant intelligent robotic control systcm
being cIcvclopcd for applications that require high (iepcndabi]ity (reliability, availability, and
safety). ‘l’he system consists of two major elements: a fli[41t tolcrarli cm troller and an operator
~110rkyf(JIjO12,” l’hc fault to]~rant c~ntro]]cr uscs a strategy which al]ows for detection and rccovcry
of hardware, operating systcm, and application sof{warc failures. It has a recovery time of less
than 40 milliseconds, a pcriocl short enough for nearly all real time applications. Protection against
higher ICVC1 unsafe events (e.g., collisions) is provided by software resident in a separate operator
workstation which includes fca(urcs to prcciict collisions and reduce the human workload thereby
reducing errors and enhancing safety, The fault tolerant controller can be used by itself in a wicic
variety of applications in industry, process control, and communications. The control]cr in
combination with the operator workstation can bc applied to robotic applications such as
spaceborne cxtravehiclar actvitics, ha~ardous matcria]s handling, inspection and maintenance of
high value items (e.g., space vehicles, reactor internals, or aircraft), mcdicinc, and other tasks
where a robot systcm failure poses a significant risk to life or property.

1. lNrl’I<Ol)lJCTION

Unccr(ain failure behavior and the potential for unsafe events have been significant concerns for the
application of robots in some critical applications. }iarlicr work [1, 2, 3, 4] has defined two
c]asscs of potential hazards in robot controllers: those caused by syslm level failures, i.e., failure
of the robot controller itself and those caused by fask level failures, i.e., se.manlically valid
commands input to the robot controller which in fact could result in collisions, unsafe movements,
or other hazards.

l;igurc 1 shows a top level view of the fault tolerant robotics controller system basecl on this view.
‘J’here arc two main subsystems: an operator workstation and the controller subsystem. ‘Ilc
operator workstation is a Silicon Graphics IRIS Crin~son/VGXT running the IRIX 5.2 operating
system. ‘1’hc controller subsystem consists of a pair of redundant VME chassis running Motorola
68040 Single Board Computers under the VxWorks Release 5.] real time multitasking kernel.
‘J’hc operator workstation interfaces with the controller subsystem over Fithernct, The two
redundant VME chassis are interfaced to each other using a high speed BIT 3 bus adapter, and each
have a separate connection to the robot arm. For the purposes of test and evaluation, these systems
arc being integrated with the Robotics Research 7 DOF arm located at the Jet Propulsion
1.aboratory (JPI .).

‘1’hc approach integrates a sophisticated user intcrfacc with hardware and software fault tolerance
resident in the controller. Three kcy technologies have emerged from this work:

[
————-—.. —————.-

p ->__~,
Op8rat0r

Vorkstatlo.n

Control ler

subyslem

n,. bt .,,

—-.———

l;igLIrC 1. Top 1 .cvel Systm View

● Comprehensive and high performance (40 msec recovery time) fault tolerance
i nq)lcl~lcntcci as an cxecllt ivc layer cm the VxWorks kernel.

● A robot controller implemented using I list ributed Recovery Blocks, and

● A user interface allowing for the creation of complex event scqucnccs and providing
operator feedback through a simulation of the robot arm.

‘l’he first two technologies are associated with the controller subsystem and are described in the
following scctiog. Section 3 describes some aspects of the user interface. Section 4 describes
potential follow-on uses of these technologies either as separate entities or as an integrated system.

‘l’he f~ult tolerant controller accepts Cartesian coordinates and translates them into joint angles
which are then output to servo controllers within the robot. Fault tolerance for hardware,
software, and communications fi~ilurcs is necessary in the contro]lcr because it must respond
rapidly to failures. A real-time fault-tolerant distributed architecture called the Extended Distributecl
Rccovcry Block (EDRB) [5] handles controller failures. The underlying fault tolerance algorithms
and mechanisms arc based on the distributed rccovcry block [6] which is in turn based on the
classical rccovcry block [7] with real time extensions. Fi.gurc 2 is a top level diagram of a robotic
control system which incorporates the EDRB.

in the terminology of the EDRB, the replicated controller computers are collectively referred to as
an operational node pair. One member of the node pair, called the active node, provides control and
processing for the robot and sensors. The other node, referred to as the shadow, operates as a
standby. “1’hc. active ancl shadow nodes exchange frequent pcrioclic status messages, called
heartbeats, over redundant communication lines as both an indication of their states of health and

2

for state clata updatcs. If the shadow node scnwx tt-lc absence of its companion active node’s
hCar[bcat, it will pron~otc itself to the aC{iVC S{a[US af[cr vclifyillg COnCll~lCnCC with a SLlpC~ViSOI’.
‘1’hc supervisor in this systcm is a task rcsi(icnt on the controller workstation. This concurrence is
required in order to prevcnf a spllrious takeover clue to faulty co]~~l~ltlrlicatio[ls in the shadow node
or a false alarm duc to a transient anomaly. After taking over, the newly promotccl active node will
induce a hardware reset and software reload of the failed node in the hope of restoring it to backup
status. ‘]’hc supervisor Itself need not be replicated because it is nccdccl only to assist in rccovcry;
the lillRB can function in steady state without the supervisor.

IJigurc 2 shows how distributed rccovcry blocks arc implcmcntccl in the I{IJRB. Within both the
active and shadow nodes are two versions of the task execution software, rcfcrrcd to as the
primary and alternate routines. Under normal circumstances, the primary routine is run on the.
active node while, the alternate routine is concurrently run on the shadow. l’hc primary routine is
coded to proviclc the greatest functionality, accuracy, and performance. ~ihc alternate routine
provides ICSS functionality and pcrformancc, but is coded to optimize reliability.

‘1’hc I~l)RB tolerates a broad range of hardware, systcm software, and application fi~ilurcs
including:

● Robotic task execution software not outputting a correct sctpoint by the rec]uircc] dcacl]inc
(dctcctccl by means of acceptance tests, timers, and rccovercd from using the alternate
routine).

● }Iardwarc or systcm software failures (detected by rncans of information encoding,
timers, and rccovercd from by switching to the redundant processor).

——.
External

Heartbeat
Indicator

?

ITSupervisor

‘ = Executing r=aflbea~Re,et@est

~
Alternate
Routine

/“’ “\
<Acceptance’>

~ Tesj/-’

Device 1[1Device
Driver Driver

–~

To System
.

Heartbeal

\ C nsent

Node

T

Shado
Executive Node

- .,c Alternate \
Routine ● ,,

-..

Primary
Routine

,.. - ““ ‘\.
~-”Acceptance\

‘\Tes~’”..-

Device

1[

Devicf
Driver Driver

To S~stem

]’igurc 2. Sof(warc Architecture of EDRB

3

● ~oll~lllll~~icatiolls link Pailurm ((ictcmci bY means of encoding, and rccoverui from using
rctransmissim, and redunci:int COllllllllllic:~ti(J1l links).

● Spurious rccovcry actions (avoicic(i by means of the supervisor anci consi(icration of
Pdilurc histories in the node executive).

Onc of the most important characteristics of the lil)RIl for robotic control applications is its fast
response and recovery time. The algorithms uscci in the I~IIRB fault detection and recovery
nlodLIlcs arc fast because they do not require any kind of rollback. “l’his characteristic is achieved
by executing the primary and alternate routines in parallel. The liDRB provicics [he general
framework of the primary routine, alternate routine, and acceptance test which work together to
tolerate software faults. IIowever, it is necessary to define application specific algorithms for the
primary and alternate routines, as well as to cicfinc acccpt:ince tests which dependably ciistinguish
bet wccn correct and incorrect output.

1 (or the controller application, diversity between the the primary and alternate routines is achieve(i
using (1) the Jacobian pseudoinvcrsc [8] which has good tracking but cannot handle singularity,
and (2) the damped least square [9] which is singularity robust but has bad tracking near
singularity. The primary routine can LISC the Jacobian pscu(ioinvcrse to ensure good tracking, while
the alternate routine, based on the damped least squalc, woul[i be used when the primary fails to
han[ile singularity. Because many of the software failures in these routines are likely to be in the
ma(hcmatical operations, the alternate routine will rely on lookup tables instead of math library
functions pmvidcd by the con~pilcr.

‘1’hc acceptance test is the single most critical clement of the EDR13. The two potential failure modes
arc rejection of a correct result or acceptance of an incorrect result. In order to avoid these fi~ilure
modes, the acceptance test must bc both simple so that it can be thoroughly verified and general so
that it provides an adequate lCVC1 of coverage and safety. Whiic these are rigorous requirements,
they arc feasible in robotic applications. III the free motion example, the acceptance test will
(ictcrminc (1) that the next setpoint is closer 10 the destination than the previous, (2) the difference
bctwccn the observed joint angles and the coJnJnand joint angles are with in an acceptable range,
(3) the command joint angles arc not close to joint limits, and (4) the observed force/torque vaiues
arc within an acceptable range of the gravitational force of the grasped object.

3 . 01’IIRA’l’OR WOI{KS’1’ATION

‘1’hc operator workstation provides both a user interface and additional functionality to prevent
collisions and other unsafe actions. This functionality is necessary because although the Pdult
tolerant controller can prevent unsafe actions caused by loss of controller hardware or software
(i,c., system level hazards), it can not prevent collisions or other undesirable events which are
caused by deliberate and planned motion (i.e., task level hazards).

The following capabilities are being developed for the operator workstation to enhance safety:

● Graphical (J. wr Intcrfhcc: A sophisticated graphical user interface allows operators to
easily COIllJlland and monitor robot motions. ~’hc interface design is intended to minimim
confusion and fatigue thereby prevent operator errors. Figure 3 shows an example of this
interface tailored for remote surface inspect ion,

● ~ollision Prediction: The operator will have the ability to identify volumes of prohibited
motion. Prior to performing a command, a robotic simulator running in the workstation
wiil determine whether the motion wili cause movement through prohibited areas.

4

